Matrix transformations and Walsh's equiconvergence theorem
نویسندگان
چکیده
In 1977, Jacob defines Gα, for any 0 ≤ α <∞, as the set of all complex sequences x such that limsup|xk|1/k ≤ α. In this paper, we apply Gu −Gv matrix transformation on the sequences of operators given in the famous Walsh’s equiconvergence theorem, where we have that the difference of two sequences of operators converges to zero in a disk. We show that the Gu −Gv matrix transformation of the difference converges to zero in an arbitrarily large disk. Also, we give examples of such matrices.
منابع مشابه
On p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملApplication of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملAn Equiconvergence Theorem for a Class of Eigenfunction Expansions(') By
A recent result of Muckenhoupt concerning the convergence of the expansion of an arbitrary function in terms of the Hermite series of orthogonal polynomials is generalised to a class of orthogonal expansions which arise from an eigenfunction problem associated with a second-order linear differential equation.
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملConvergence of Interpolating Laurent Polynomials on an Annulus
We study the convergence of Laurent polynomials that interpolate functions on the boundary of a circular annulus. The points of interpolation are chosen to be uniformly distributed on the two circles of the boundary. A maximal convergence theorem for functions analytic on the closure of the annulus is proved. We point out that, in general, there is no equiconvergence theorem between the interpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005